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Exact superpotentials for theories with flavors via a matrix integral
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We extend and test the method of Dijkgraaf and Vafa for computing the superpotentiat bftheories to
include flavors in the fundamental representation of the gauge group. This amounts to computing the contri-
bution to the superpotential from surfaces with one boundary in the matrix integral. We compute exactly the
effective superpotential for the case of the gauge grdgpl.), Ny massive flavor chiral multiplets in the
fundamental and one massive chiral multiplet in the adjoint, together with a Yukawa coupling. We compare up
to sixth order with the result obtained by standard field theory techniques in the already nontrivial case of
N.=2 andN;=1. The agreement is perfect.
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In a recent paper, Dijkgraaf and Vafad] (building on ef(N(Z:/SZ)]-‘XZZ(S,}\a)7(NC/S)}'X:1(S,)\a)
previous work[2]) have proposed a simple technique for
computing the effective superpotential for the glueball field ~ =
S=—(1/327?)tr W*W,, in a large class ofV’=1 theories. Nf d®,dQ;dOfe™ (Ne/IWrree®i.Q1.Q\ N2 (3)
For instance, in the case oft&(N;) gauge group and chiral
fields ®; in the adjoint representation interacting with a tree ) ) o
level superpotentialV,.(®; ,),), one is instructed to com- and then writgthe non-orientable contributioB, ;(S,A,)
pute the matrix integral to leading order My : is absent in this cage

IF—2(S\a)
S

+ Fyo1(Sha). @

ef(Nslsz)]:XZZ(Sv}\a)mJ' dq)ief(Nc/S)Wtree((Di v}\a), (l) WDv(S,A,)\a):NCS[_Iog(S/A3)+1]+NC

where we have denoted by, the coupling constants appear-

ing in the superpotential. The effective superpotential is, in , . .
this casd 1], We are now going to test this conjecture. We take a

U(N.) gauge theory with one adjoint chiral multiplét and

N; chiral multiplets in the fundamenté; andQf. The tree

level superpotential gives masses to all matter fields and,

IS moreover, there is a cubic coupling between the fundamen-

2 tals and the adjoint. All other possible couplings are turned
off. The tree level superpotential reads

where the presence d.(d/9S) is justified by the combina-

torics of diagrams written on surfaces with spherical topol-

ogy. The first piece of the superpotential is the Veneziano- Wiiee=

Yankielowicz superpotential for pur8U(N.) Super Yang- 2

Mills (SYM) theory[3], while the second piece which starts

with O(S) terms gives the instanton corrections. In the casgyhere the flavor indices are summed while the color indices

that the matrix model is integrable we can write the exactyre not written explicitly.

effective superpotential in closed form; otherwise we can gince there are no self-interactions of the adjoint fiéld

compute it at any given order & Recent checks and devel- 5| diagrams with interactions will involve at least one flavor

opments of the conjecture have been performeldtinl2]. loop, that is a boundary. The genus zero piece of the matrix
In the case of gauge grouO(N,) or Sp(N,) there are jntegral reduces trivially to théone loop vacuum amplitude

also contributions from nonorientable diagrams that can bef the adjoint field, which enforces the matching of scales in

written on the projective plane and their contribution the Veneziano-Yankielowicz piece of the superpotential. A

G,-1(S\g) will appear in Eq.(2) without the factor similar factor is also present in the flavor integral with analo-

Nc(9/39S). gous consequences. By working directly with the scale of the
It is a natural step to extend the conjecture to theorieure SYM theory we can concentrate on the interacting part

including matter, that i\ chiral multiplets in the funda- which receives no contributions from genus zero. To leading

mental. This is implemented simply by including surfacesorder inN,, the matrix integral is thus saturated by planar

with boundaries. To be specific, in the case of gauge grougiagrams with one boundary, which sum upfo_ ;.

U(N,), for adjoint mattexd; and fundamental matt€}; and The matrix integration can thus be easily performed.

Q' one should first compute Write

dF,—»(S,\
Wo(S,A Na) = NS —log(S/A%) +1]+ NCM,

1 - -
“Mtrd2+mQQ'+gQ;@Q", 6)
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= J dddQ,dOfe Ne/SNW2M tr ®2+mQQ +gQ;@Qf

:<ef(Nc/S)9Qf‘D6f>, (6)
where the correlators are normalized such that
1S
(Qan‘“’)— — = "69 (g = s —5“57. (7)
Expanding the exponential we have
(e~ (Ne/99Qr@Q'
S 1 [gNe|* Af Aaf
—kEO(zT)!( s ) (Q@QN1(QPQ"; -
X(Qi®Q")), (8)

where we took into account that only correlators of an even

number of fieldsb are nonzero.
It is a simple combinatorial exercise to extract from Eq.

(8) the coefficients of the connected planar diagrams with
one boundary. The different diagrams can be obtained first

by contracting theQs andQs in (2k—1)! ways to give a
single boundary, and then connecting doints on the
boundary througtk nonintersecting linegthe (d®) propa-
gatorg. The solution to this last combinatorial problem can
be found in Eq(31) of [13]. The result for the free energy is

N, o (2k=1)! [gN|*
Efxﬂ(s’g’m"\")__'\'fgl (k+1)!k!(?
S 2k S k
k+1
X(mNc) MNC) e @
which we can rewrite, forr=g%/m?M, as
S (2k—1)! kak+1
Fy1(S,a)=— kagl Kr DIk @ (10)
This expression can actually be summed to give
Sa)= NS:L ! 1-4aS—-1
Fr=1(Sa)==Ni§ 5+ 7—=(V1-4aS-1)
1 1
—|Og §+§\/1—4a5) . (11)
We thus claim that
Wpy=NcS[ —log(S/A®) + 1]+ F,_1(S,@) (12

is the exact superpotential for our theory with flavors and
the Yukawa coupling to the adjoint matter field.

Our next task is to provide a purely field theory deduction
of the effective potential, and check that it matches the ex
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ducing the low energy superpotential through the Seiberg-
Witten curve of the system. While this is an interesting
problem, it is already possible to prove the power of the DV
approach in the simplest case, thais=2 andN¢=1. This
case already gives a nontrivial result from the matrix model,
and we are going to show that it matches precisely the field
theory exact superpotential that we can simply obtain by the
standard techniques ¢14,15. In turn, this is a strong sup-
port for the conjectured exact superpotenti).

Note that the superpotentiél2) does not seem to discern
between N;<N. and N{=N, while, for instance, the
Seiberg-Witten curve of the related systems does. A hint that
our solution for the matrix integral could break down is that
for Ny=N_, additional boundaries start giving a large con-
tribution to the integral, so that the=1 term is no longer
singled out.

Let us write the first few terms of our exact superpotential
in the caseN.=2 andN¢=1

1 1 5
WDV: 28[ - IOg(S/As) + 1] - E a’SZ— Ea’zsa— 6 a’384
7 21
- 2“455_ < a®SP—11a%5"+0(a). (13

Now we integrateS out by settingdsWpy,=0 and solve for
S(A) as an expansion in. Plugging back into Eq(13) we
find

1 1 1
WDV(A,a)=2A3{1— ZaA3— g(aA3)2— §(aA3)3

2 Tl aA)®

3\4_
(“A ) 1024

3\5__
~ 128 (“A )

+0(a’)|. (14

We can now set out to obtain the same effective superpoten-
tial through an independent route. Consider the) theory
with an adjoint matter fieldb andN;=1 chiral fields in the

fundamentalQ and Q. Moreover, let us denote by the
scale of this theorjto be more precise, of tHeU(2) factor.
The tree level superpotential we introduce is

EM tr &2+ mQO+gQd 0. (15)

Wiree= 2

Let us first integrate out the adjoint fielt. This trivially

gives ®=—(g/M)QQ, and substituting into Eq(15) we
get, in the notation of15]

1 2
mX——g—

2
2MX

(16)

pression computed through the matrix model. This task cawhereX=QQ is the gauge invariant meson field.

be performed by considering the system as\éal defor-
mation of anA/=2 SYM theory with matter, and then de-

We now add the Affleck-Dine-Seiberg piece to the super-
potential[ 16], taking into account the matching of the scales

065005-2



EXACT SUPERPOTENTIALS FOR THEORIES WITH . ..

A5=MZ?A3, whereA is the scale of the gauge theory with

one flavor. The exact effective superpotential is thus given by

AS 19°
Soimx- s e,

Weff: X 2 M

17

w
The absence of further corrections can be checked with the
fact that the above superpotential leads to the right Seiberg-

Witten curve, see for instan¢&7]. We can now integrate out
the massive mesoX and thus obtain the effective superpo-
tential for the low energy pur8U(2) theory[the U(1) fac-
tor is now decouplelj whose scale\ is matched to be\®

=mAS®. The scale\ is now the same as in E¢L4).
The condition for the extremum &q¢; is
ax®—x?+1=0, (18

wherea=(g?/m?M)A3=aA® andx=(m/A%)X. The solu-
tion, expanded in powers @, is
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1 1 5 2. 3 2314
X= +§a+§a +a +1—283+

7 o 7293 ¢ oa’
Ea +ma +0(a ).
(19

Plugging Eq.(19) back into the effective superpotential?),
e get

1 1, 1, 21, 1. 429
— 3 T AT a2 T3 T A T A5 7T 6
Wit ZA(l 22782 g% 128 T 4% 10247
+0(a’) |, (20)

which agrees exactly with E¢14).
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